Contributions intended for publication under this heading should follow the format given in the Checklist for Authors [Acta Cryst. (1985). C41, 1-4].

Acta Cryst. (1989). C45, 1067-1068

Structure of 9,9,9,9-Tetracarbonyl-2,3,4,5-tetrafluoro-7-pentacarbonylmanganio-9-mangana-8-oxabicyclo[4.3.0]nonane

BY WOLFGANG HILLER

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Federal Republic of Germany

AND THOMAS KOENIG AND ROLF WINTER

Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA

(Received 9 September 1988; accepted 3 January 1989)

Abstract. $C_{16}O_{10}F_4Mn_2$, $M_r = 538.04$, monoclinic, $P2_1/c$, a = 10.325 (2), b = 6.631 (3), c = 27.734 (3) Å, $V = 1898 \cdot 8 \text{ Å}^3$, Z = 4, $\beta = 90.673 (3)^{\circ}$, $D_r =$ $\mu =$ 1.882 g cm^{-3} , Μο Κα, $\lambda = 0.71073$ Å, 13.667 cm^{-1} , F(000) = 1048, T = 293 K. The final

R value is 0.063 for 1423 significant $[I > 5\sigma(I)]$ reflections. The molecule contains a planar acetotetrafluorophenyl group chelated through the acyl oxygen and the ortho carbon atom of the tetrafluorophenyl ring to a cis tetracarbonylmanganese

Table 1. Data collection and structure refinement parameters

Prismatic

Crystal shape

Table 2. Positional parameters, isotropic and equivalent isotropic thermal parameters (Å²)

rystal shape Prismatic iffractometer used CAD-4, Enraf–Nonius			$U_{eq} = 1/3$ (trace of the orthogonalized U_{IJ} matrix).						
No. and θ range of reflections	25; 11–19°		<i>x</i>	у	Z	U_{eq}/U_{iso}			
for lattice parameters		Mnl	0.8461 (2)	0.4835 (3)	0.33548 (6)	0.046 (1)			
Absorption coefficient μ	13.667 cm ⁻¹	Mn2	0-4377 (2)	0.1939 (3)	0-37683 (6)	0-047 (1)			
Method used for absorption correction	DIFABS (Walker & Stuart, 1983)	F2	1.0719 (7)	0-406 (1)	0-4232 (2)	0.072 (3)			
Minimum absorption correction	0.842	F3	1.0427 (7)	0.243 (1)	0.5097 (2)	0.080 (3)			
Maximum absorption correction	1.190	F4	0.8075 (7)	0-116 (1)	0.5389 (2)	0.075 (3)			
Average absorption correction	1.008	F5	0.6044 (6)	0.140(1)	0.4810(2)	0.068 (3)			
Maximum value of $(\sin\theta)/\lambda$	0-572 Å -1	08	0.6598 (7)	0-393 (1)	0.3436 (2)	0.053 (3)			
reached in intensity measurement		011	1-115 (1)	0.599 (2)	0.3250(3)	0.103 (4)			
Range of h, k and l	0→11, 0→7, -31→31	012	0-9128 (9)	0.084 (1)	0.2942 (3)	0.086 (3)			
Standard reflections	228; 306; 400	O13	0.7768 (9)	0.676 (2)	0.2426 (3)	0.091 (3)			
Interval, standard reflections measured	2h, no intensity variation	O14	0.811(1)	0.857 (2)	0.3914 (4)	0.105 (4)			
Total number of reflections measured;	2770; 24°	O21	0.1654 (8)	0.052(1)	0.3631 (3)	0.076 (3)			
θ range	(214 systematic absences included)	022	0.3679 (9)	0.385(1)	0.4706 (3)	0.085 (3)			
No. of unique reflections; R _{int}	2571; 0.023	O23	0.5110 (8)	-0.198 (1)	0.4216 (3)	0.077 (3)			
No. of observed reflections	1423	O24	0-5218 (9)	0.016 (2)	0.2842 (3)	0.093 (3)			
Criterion for observed reflections	$I > 3\sigma(I)$	O25	0.3898 (9)	0.587(1)	0.3264 (3)	0.084 (3)			
Methods used to solve structure	Patterson,	CI	0.854 (1)	0.359 (1)	0.4022 (3)	0.038 (3)			
	subsequent difference Fourier	C2	0.951 (1)	0-338 (2)	0-4348 (4)	0.052 (3)			
Use of F or F^2 in LS refinement	F	C3	0-938 (1)	0.258 (2)	0-4796 (4)	0.051 (3)			
Weighting scheme	$1/\sigma^2$	C4	0.823 (1)	0.193 (2)	0-4943 (4)	0.055 (3)			
Parameters refined	140	C5	0.719(1)	0.206 (2)	0-4639 (4)	0.053 (3)			
Value of R	0.063	C6	0.732 (1)	0.287 (2)	0-4179 (3)	0.038 (3)			
Value of wR	0-064	C7	0-625 (1)	0.301 (2)	0-3811 (3)	0.043 (3)			
Ratio of max. LS shift to e.s.d. (Δ/σ)	0.0002	C11	1.008 (1)	0-549 (2)	0.3305 (4)	0.068 (4)			
Max. height in final ΔF map	0-547 e Å−3	C12	0.883 (1)	0-237 (2)	0.3096 (4)	0.056 (3)			
Error in an observation of unit weight	2.794	C13	0.807(1)	0.597 (2)	0-2789 (4)	0.063 (3)			
Secondary-extinction coefficient	4.083 (1) × 10 ⁻⁷ (Zachariasen, 1963)	C14	0-820(1)	0.714 (2)	0-3683 (4)	0.060 (3)			
Sources of atomic scattering factors	International Tables for X-ray	C21	0.268 (1)	0.107 (2)	0.3686 (4)	0.058 (3)			
-	Crystallography (1974)	C22	0-397 (1)	0.313 (2)	0-4349 (4)	0.060 (3)			
Computer used	DEC MicroVAXII	C23	0-483 (1)	-0·046 (2)	0.4059 (4)	0.061 (3)			
Programs used	VAXSDP, version 2.2 (1985)	C24	0-486 (1)	0.084 (2)	0.3200 (4)	0.065 (3)			
-	(Frenz, 1978)	C25	0.405 (1)	0.435 (2)	0.3463 (4)	0.062 (3)			

© 1989 International Union of Crystallography

Table 3. Distances (Å) and angles (°) with e.s.d.'s

Mn1 Mn1 Mn1 Mn1 Mn1 Mn2 Mn2 Mn2 Mn2	O8 C1 C11 C12 C13 C14 C7 C21 C22	2.030 (2.03 (1 1.74 (1 1.83 (1 1.79 (1 1.80 (1 2.06 (2 1.85 (1 1.85 (1	(7))))))))	011 012 013 014 021 022 023 024 025	C11 C12 C13 C14 C21 C22 C23 C24 C25	1.16 (2 1.15 (1 1.17 (1 1.15 (2 1.13 (1 1.14 (1 1.13 (1 1.15 (1 1.16 (1))))))))))
Mn2 Mn2	C23 C24	1·84 (1 1·81 (1	.)	C1 C1	C2 C6	1·35 (1 1·42 (1)
Mn2	C25	1.85 (1)	C2	C3	1.36 (1)
F2 F3	C3	1.30 (1))	C4	C5	1.35 (2	.) 1)
F4	C4	1.35 (1	ĺ)	C5	C6	1.39 (1	.)
F5	C5	1.35 (1		C6	C7	1.50 (1) ·
08	C/	1.26 (1)				
08	Mnl	Cl	79-0 (4)	C22	Mn2	C24	176-9 (6)
08	Mnl	CII	176.7 (5)	C22	Mn2	C25	89.2 (5)
08	Mn1 Mn1	C12	91.0 (4)	C23	Mn2 Mn2	C24	176.0 (5)
08	Mn 1	C14	92.6 (4)	C24	Mn2	C25	90.1 (5)
ĊĨ	Mnl	cii	98.4 (5)	Mnl	08	C7	120.9 (6)
C1	Mn 1	C12	89-3 (4)	Mnl	C1	C2	132-4 (8)
C1	Mn 1	C13	169-2 (6)	Mnl	C1	C6	112.7 (7)
CI	Mnl	C14	83.7 (4)	C2	Cl	C6	114.8 (9)
	Mn I	C12 C12	89.3 (6)	F2 F2	C2		118.8 (9)
	Mnl	C14	88.8 (6)	F2 C1	C2	C3	125 (2)
C12	Mnl	C13	94.4 (5)	F3	C3	C2	120 (1)
C12	Mn l	C14	172.5 (6)	F3	C3	C4	119-5 (9)
C13	Mnl	C14	93-0 (5)	C2	C3	C4	121 (2)
C7	Mn2	C21	175-8 (4)	F4	C4	C3	121 (1)
C7	Mn2	C22	91.5 (5)	F4	C4	C5	119(1)
C7	Mn2	C23	92.4 (5)	C3 E5	C4	C3	117(1)
Ci	Mn2	C25	84.0 (5)	F5	C5	C4	122.9 (9)
C21	Mn2	C22	91.0 (5)	C4	Č5	Č6	120 (2)
C21	Mn2	C23	90.9 (5)	CI	C6	C5	120.2 (9)
C21	Mn2	C24	92-2 (5)	Cl	C6	C7	115.0 (8)
C21	Mn2	C25	92-6 (5)	C5	C6	C7	124.7 (9)
C22	Mn2	C23	92.6 (5)	Mn2	C7	08	113.3 (7)
Mn2	C7	C6	134.6 (8)	Mn2	C21	021	179 (1)
U8 Mal			112-1 (9)	Mn2	C22	022	177(2)
Mn1	C12	012	176 (2)	Mn2	C23	023	177(2)
Mnl	CI3	013	177 (2)	Mn2	C25	025	177 (2)
Mn1	C14	014	175 (2)			- 20	,/

Fig. 1. Plot of the molecule produced using SCHAKAL (Keller, 1988).

group; furthermore, a pentacarbonylmanganese group is bound to the acyl carbon. In the five-membered mangana ring the Mn–O and Mn–C bond distances are both 2.03(1) Å with the O–Mn–C bond angle 79.0 (4)°. The C–O distance in the acyl group is 1.26(1) Å.

Experimental. The title compound is stable under normal atmospheric conditions and was recrystallized from CH₂Cl₂. The ¹⁹F NMR spectrum (C₆F₆, 360 MHz) shows a chemical shift δ at 109.68 (quartet), 128.86 (sextet) and 145.73 (septet).

A yellow single crystal of approximate dimensions $0.03 \times 0.15 \times 0.15$ mm was mounted on a glass fiber. All X-ray investigations were performed on a CAD-4 (Enraf-Nonius) diffractometer. The cell parameters are given in the *Abstract*; the parameters for intensity data collection, structure solution and refinement are listed in Table 1. Final atomic coordinates are given in Table 2, bond distances and angles in Table 3.* Fig. 1 shows the molecular numbering scheme.

Related literature. A general method for the preparation of mangana rings has recently been reported by DeShong, Sidler, Rybczynski, Slough & Rheingold (1988). Related crystal structures of tetracarbonyl-2-acetylphenylmanganese and derivatives are reported by Haupt, Lohmann & Flörke (1985) and Huie, Knobler, Firestein, McKinney & Kaesz (1977).

We thank Harald König and Martin Kretschmar for their kind support.

* Lists of structure factors, anisotropic thermal parameters and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51736 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- DeShong, P., Sidler, D. R., Rybczynski, P. J., Slough, G. A. & Rheingold, A. L. (1988). J. Am. Chem. Soc. 110, 2575–2585.
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP. A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination. In Computing in Crystallography, pp. 64-71. Delft Univ. Press. [VAXSDP, version 2.2 (1985).]
- HAUPT, H.-J., LOHMANN, G. & FLÖRKE, U. (1985). Z. Anorg. Allg. Chem. 526, 103-121.
- HUIE, B. T., KNOBLER, C. B., FIRESTEIN, G., MCKINNEY, R. J. & KAESZ, H. D. (1977). J. Am. Chem. Soc. 99, 7852-7862, and references therein.
- International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KELLER, E. (1988). Program SCHAKAL. Univ. Freiburg, Federal Republic of Germany.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

